common_primitives/
signatures.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(feature = "serde")]
use frame_support::{Deserialize, Serialize};
use frame_support::{
	__private::{codec, RuntimeDebug},
	pallet_prelude::{Decode, Encode, MaxEncodedLen, TypeInfo},
};
use lazy_static::lazy_static;
use parity_scale_codec::{alloc::string::ToString, DecodeWithMemTracking};
use sp_core::{
	bytes::from_hex,
	crypto,
	crypto::{AccountId32, FromEntropy},
	ecdsa, ed25519,
	hexdisplay::HexDisplay,
	sr25519, ByteArray, H256,
};
use sp_runtime::{
	traits,
	traits::{Lazy, Verify},
	MultiSignature,
};
extern crate alloc;
use crate::{msa::H160, utils::to_abi_compatible_number};
use alloc::boxed::Box;

/// Ethereum message prefix eip-191
const ETHEREUM_MESSAGE_PREFIX: &[u8; 26] = b"\x19Ethereum Signed Message:\n";

/// A trait that allows mapping of raw bytes to AccountIds
pub trait AccountAddressMapper<AccountId> {
	/// mapping to the desired address
	fn to_account_id(public_key_or_address: &[u8]) -> AccountId;

	/// mapping to bytes of a public key or an address
	fn to_bytes32(public_key_or_address: &[u8]) -> [u8; 32];

	/// reverses an accountId to it's 20 byte ethereum address
	fn to_ethereum_address(account_id: AccountId) -> H160;

	/// returns whether `account_id` converts to a valid Ethereum address
	fn is_ethereum_address(account_id: &AccountId) -> bool;
}

/// converting raw address bytes to 32 bytes Ethereum compatible addresses
pub struct EthereumAddressMapper;

impl AccountAddressMapper<AccountId32> for EthereumAddressMapper {
	fn to_account_id(public_key_or_address: &[u8]) -> AccountId32 {
		Self::to_bytes32(public_key_or_address).into()
	}

	/// In this function we are trying to convert different types of valid identifiers to valid
	/// Substrate supported 32 bytes AccountIds
	/// ref: <https://github.com/paritytech/polkadot-sdk/blob/79b28b3185d01f2e43e098b1f57372ed9df64adf/substrate/frame/revive/src/address.rs#L84-L90>
	/// This function have 4 types of valid inputs
	/// 1. 20 byte ETH address which gets appended with 12 bytes of 0xEE
	/// 2. 32 byte address is returned unchanged
	/// 3. 64 bytes Secp256k1 public key is converted to ETH address based on <https://asecuritysite.com/encryption/ethadd> and appended 12 bytes of 0xEE
	/// 4. 65 bytes Secp256k1 public key is also converted to ETH address after skipping first byte and appended 12 bytes of 0xEE
	///    Anything else is invalid and would return default (all zeros) 32 bytes.
	fn to_bytes32(public_key_or_address: &[u8]) -> [u8; 32] {
		let mut hashed = [0u8; 32];
		match public_key_or_address.len() {
			20 => {
				hashed[..20].copy_from_slice(public_key_or_address);
			},
			32 => {
				hashed[..].copy_from_slice(public_key_or_address);
				return hashed;
			},
			64 => {
				let hashed_full = sp_io::hashing::keccak_256(public_key_or_address);
				// Copy bytes 12..32 (20 bytes) from hashed_full to the beginning of hashed
				hashed[..20].copy_from_slice(&hashed_full[12..]);
			},
			65 => {
				let hashed_full = sp_io::hashing::keccak_256(&public_key_or_address[1..]);
				// Copy bytes 12..32 (20 bytes) from hashed_full to the beginning of hashed
				hashed[..20].copy_from_slice(&hashed_full[12..]);
			},
			_ => {
				log::error!("Invalid public key size provided for {:?}", public_key_or_address);
				return [0u8; 32];
			},
		};

		// Fill the rest (12 bytes) with 0xEE
		hashed[20..].fill(0xEE);
		hashed
	}

	fn to_ethereum_address(account_id: AccountId32) -> H160 {
		let mut eth_address = [0u8; 20];
		if Self::is_ethereum_address(&account_id) {
			eth_address[..].copy_from_slice(&account_id.as_slice()[0..20]);
		} else {
			log::error!("Incompatible ethereum account id is provided {:?}", account_id);
		}
		eth_address.into()
	}

	fn is_ethereum_address(account_id: &AccountId32) -> bool {
		account_id.as_slice()[20..] == *[0xEE; 12].as_slice()
	}
}

/// Signature verify that can work with any known signature types.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(
	Eq,
	PartialEq,
	Clone,
	Encode,
	Decode,
	DecodeWithMemTracking,
	MaxEncodedLen,
	RuntimeDebug,
	TypeInfo,
)]
pub enum UnifiedSignature {
	/// An Ed25519 signature.
	Ed25519(ed25519::Signature),
	/// An Sr25519 signature.
	Sr25519(sr25519::Signature),
	/// An ECDSA/SECP256k1 signature compatible with Ethereum
	Ecdsa(ecdsa::Signature),
}

impl From<ed25519::Signature> for UnifiedSignature {
	fn from(x: ed25519::Signature) -> Self {
		Self::Ed25519(x)
	}
}

impl TryFrom<UnifiedSignature> for ed25519::Signature {
	type Error = ();
	fn try_from(m: UnifiedSignature) -> Result<Self, Self::Error> {
		if let UnifiedSignature::Ed25519(x) = m {
			Ok(x)
		} else {
			Err(())
		}
	}
}

impl From<sr25519::Signature> for UnifiedSignature {
	fn from(x: sr25519::Signature) -> Self {
		Self::Sr25519(x)
	}
}

impl TryFrom<UnifiedSignature> for sr25519::Signature {
	type Error = ();
	fn try_from(m: UnifiedSignature) -> Result<Self, Self::Error> {
		if let UnifiedSignature::Sr25519(x) = m {
			Ok(x)
		} else {
			Err(())
		}
	}
}

impl From<ecdsa::Signature> for UnifiedSignature {
	fn from(x: ecdsa::Signature) -> Self {
		Self::Ecdsa(x)
	}
}

impl TryFrom<UnifiedSignature> for ecdsa::Signature {
	type Error = ();
	fn try_from(m: UnifiedSignature) -> Result<Self, Self::Error> {
		if let UnifiedSignature::Ecdsa(x) = m {
			Ok(x)
		} else {
			Err(())
		}
	}
}

impl Verify for UnifiedSignature {
	type Signer = UnifiedSigner;
	fn verify<L: Lazy<[u8]>>(&self, msg: L, signer: &AccountId32) -> bool {
		match (self, signer) {
			(Self::Ed25519(ref sig), who) => match ed25519::Public::from_slice(who.as_ref()) {
				Ok(signer) => sig.verify(msg, &signer),
				Err(()) => false,
			},
			(Self::Sr25519(ref sig), who) => match sr25519::Public::from_slice(who.as_ref()) {
				Ok(signer) => sig.verify(msg, &signer),
				Err(()) => false,
			},
			(Self::Ecdsa(ref sig), who) => check_ethereum_signature(sig, msg, who),
		}
	}
}

/// Public key for any known crypto algorithm.
#[derive(Eq, PartialEq, Ord, PartialOrd, Clone, Encode, Decode, RuntimeDebug, TypeInfo)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum UnifiedSigner {
	/// An Ed25519 identity.
	Ed25519(ed25519::Public),
	/// An Sr25519 identity.
	Sr25519(sr25519::Public),
	/// An SECP256k1/ECDSA identity (12 bytes of zeros + 20 bytes of ethereum address).
	Ecdsa(ecdsa::Public),
}

impl FromEntropy for UnifiedSigner {
	fn from_entropy(input: &mut impl codec::Input) -> Result<Self, codec::Error> {
		Ok(match input.read_byte()? % 3 {
			0 => Self::Ed25519(FromEntropy::from_entropy(input)?),
			1 => Self::Sr25519(FromEntropy::from_entropy(input)?),
			2.. => Self::Ecdsa(FromEntropy::from_entropy(input)?),
		})
	}
}

/// NOTE: This implementations is required by `SimpleAddressDeterminer`,
/// we convert the hash into some AccountId, it's fine to use any scheme.
impl<T: Into<H256>> crypto::UncheckedFrom<T> for UnifiedSigner {
	fn unchecked_from(x: T) -> Self {
		ed25519::Public::unchecked_from(x.into()).into()
	}
}

impl AsRef<[u8]> for UnifiedSigner {
	fn as_ref(&self) -> &[u8] {
		match *self {
			Self::Ed25519(ref who) => who.as_ref(),
			Self::Sr25519(ref who) => who.as_ref(),
			Self::Ecdsa(ref who) => who.as_ref(),
		}
	}
}

impl traits::IdentifyAccount for UnifiedSigner {
	type AccountId = AccountId32;
	fn into_account(self) -> AccountId32 {
		match self {
			Self::Ed25519(who) => <[u8; 32]>::from(who).into(),
			Self::Sr25519(who) => <[u8; 32]>::from(who).into(),
			Self::Ecdsa(who) => {
				let decompressed_result = libsecp256k1::PublicKey::parse_slice(
					who.as_ref(),
					Some(libsecp256k1::PublicKeyFormat::Compressed),
				);
				match decompressed_result {
					Ok(public_key) => {
						// calculating ethereum address compatible with `pallet-revive`
						let decompressed = public_key.serialize();
						EthereumAddressMapper::to_account_id(&decompressed)
					},
					Err(_) => {
						log::error!("Invalid compressed public key provided");
						AccountId32::new([0u8; 32])
					},
				}
			},
		}
	}
}

impl From<ed25519::Public> for UnifiedSigner {
	fn from(x: ed25519::Public) -> Self {
		Self::Ed25519(x)
	}
}

impl TryFrom<UnifiedSigner> for ed25519::Public {
	type Error = ();
	fn try_from(m: UnifiedSigner) -> Result<Self, Self::Error> {
		if let UnifiedSigner::Ed25519(x) = m {
			Ok(x)
		} else {
			Err(())
		}
	}
}

impl From<sr25519::Public> for UnifiedSigner {
	fn from(x: sr25519::Public) -> Self {
		Self::Sr25519(x)
	}
}

impl TryFrom<UnifiedSigner> for sr25519::Public {
	type Error = ();
	fn try_from(m: UnifiedSigner) -> Result<Self, Self::Error> {
		if let UnifiedSigner::Sr25519(x) = m {
			Ok(x)
		} else {
			Err(())
		}
	}
}

impl From<ecdsa::Public> for UnifiedSigner {
	fn from(x: ecdsa::Public) -> Self {
		Self::Ecdsa(x)
	}
}

impl TryFrom<UnifiedSigner> for ecdsa::Public {
	type Error = ();
	fn try_from(m: UnifiedSigner) -> Result<Self, Self::Error> {
		if let UnifiedSigner::Ecdsa(x) = m {
			Ok(x)
		} else {
			Err(())
		}
	}
}

#[cfg(feature = "std")]
impl std::fmt::Display for UnifiedSigner {
	fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result {
		match *self {
			Self::Ed25519(ref who) => write!(fmt, "ed25519: {}", who),
			Self::Sr25519(ref who) => write!(fmt, "sr25519: {}", who),
			Self::Ecdsa(ref who) => write!(fmt, "ecdsa: {}", who),
		}
	}
}

impl Into<UnifiedSignature> for MultiSignature {
	fn into(self: MultiSignature) -> UnifiedSignature {
		match self {
			MultiSignature::Ed25519(who) => UnifiedSignature::Ed25519(who),
			MultiSignature::Sr25519(who) => UnifiedSignature::Sr25519(who),
			MultiSignature::Ecdsa(who) => UnifiedSignature::Ecdsa(who),
		}
	}
}

fn check_secp256k1_signature(signature: &[u8; 65], msg: &[u8; 32], signer: &AccountId32) -> bool {
	match sp_io::crypto::secp256k1_ecdsa_recover(signature, msg) {
		Ok(pubkey) => {
			let hashed = EthereumAddressMapper::to_bytes32(&pubkey);
			log::debug!(target:"ETHEREUM", "eth hashed={:?} signer={:?}",
				HexDisplay::from(&hashed),HexDisplay::from(<dyn AsRef<[u8; 32]>>::as_ref(signer)),
			);
			&hashed == <dyn AsRef<[u8; 32]>>::as_ref(signer)
		},
		_ => false,
	}
}

fn eth_message_hash(message: &[u8]) -> [u8; 32] {
	let only_len = (message.len() as u32).to_string().into_bytes();
	let concatenated = [ETHEREUM_MESSAGE_PREFIX.as_slice(), only_len.as_slice(), message].concat();
	log::debug!(target:"ETHEREUM", "prefixed {:?}",concatenated);
	sp_io::hashing::keccak_256(concatenated.as_slice())
}

fn check_ethereum_signature<L: Lazy<[u8]>>(
	signature: &ecdsa::Signature,
	mut msg: L,
	signer: &AccountId32,
) -> bool {
	let verify_signature = |signature: &[u8; 65], payload: &[u8; 32], signer: &AccountId32| {
		check_secp256k1_signature(signature, payload, signer)
	};

	// signature of ethereum prefixed message eip-191
	let message_prefixed = eth_message_hash(msg.get());
	if verify_signature(signature.as_ref(), &message_prefixed, signer) {
		return true
	}

	// PolkadotJs raw payload signatures
	// or Ethereum based EIP-712 compatible signatures
	let hashed = sp_io::hashing::keccak_256(msg.get());
	verify_signature(signature.as_ref(), &hashed, signer)
}

/// returns the ethereum encoded prefix and domain separator for EIP-712 signatures
pub fn get_eip712_encoding_prefix(verifier_contract_address: &str) -> Box<[u8]> {
	lazy_static! {
		// domain separator
		static ref DOMAIN_TYPE_HASH: [u8; 32] = sp_io::hashing::keccak_256(
			b"EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)",
		);

		static ref DOMAIN_NAME: [u8; 32] = sp_io::hashing::keccak_256(b"Frequency");
		static ref DOMAIN_VERSION: [u8; 32] = sp_io::hashing::keccak_256(b"1");
		// TODO: USE correct chain ids for different networks
		static ref CHAIN_ID: [u8; 32] = to_abi_compatible_number(420420420u32);
	}
	let verifier_contract: [u8; 20] = from_hex(verifier_contract_address)
		.unwrap_or_default()
		.try_into()
		.unwrap_or_default();

	// eip-712 prefix 0x1901
	let eip_712_prefix = [25, 1];

	let mut zero_prefixed_verifier_contract = [0u8; 32];
	zero_prefixed_verifier_contract[12..].copy_from_slice(&verifier_contract);

	let domain_separator = sp_io::hashing::keccak_256(
		&[
			DOMAIN_TYPE_HASH.as_slice(),
			DOMAIN_NAME.as_slice(),
			DOMAIN_VERSION.as_slice(),
			CHAIN_ID.as_slice(),
			&zero_prefixed_verifier_contract,
		]
		.concat(),
	);
	let combined = [eip_712_prefix.as_slice(), domain_separator.as_slice()].concat();
	combined.into_boxed_slice()
}

#[cfg(test)]
mod tests {
	use crate::{
		handles::ClaimHandlePayload,
		node::EIP712Encode,
		signatures::{UnifiedSignature, UnifiedSigner},
	};
	use impl_serde::serialize::from_hex;
	use sp_core::{ecdsa, sr25519, Pair};
	use sp_runtime::{
		traits::{IdentifyAccount, Verify},
		AccountId32,
	};

	use super::{AccountAddressMapper, EthereumAddressMapper};

	#[test]
	fn polkadot_ecdsa_should_not_work_due_to_using_wrong_hash() {
		let msg = &b"test-message"[..];
		let (pair, _) = ecdsa::Pair::generate();

		let signature = pair.sign(msg);
		let unified_sig = UnifiedSignature::from(signature);
		let unified_signer = UnifiedSigner::from(pair.public());
		assert!(!unified_sig.verify(msg, &unified_signer.into_account()));
	}

	#[test]
	fn ethereum_prefixed_eip191_signatures_should_work() {
		// payload is random and the signature is generated over that payload by a standard EIP-191 signer
		let payload = b"test eip-191 message payload";
		let signature_raw = from_hex("0x276dcc9c69da24dd8441ba3acc9b60d8aae0cb39f0bc5ad92c723a31bf11575031d860978280191a0a97a1f74336ca0c79a8b1b3aab013fb58a27f113b73b2081b").expect("Should convert");
		let unified_signature = UnifiedSignature::from(ecdsa::Signature::from_raw(
			signature_raw.try_into().expect("should convert"),
		));

		let public_key = ecdsa::Public::from_raw(
			from_hex("0x03be5b145e12c5fb95151374ed919eb445ade57637d729dd2d73bf161d4bc10329")
				.expect("should convert")
				.try_into()
				.expect("invalid size"),
		);
		let unified_signer = UnifiedSigner::from(public_key);
		assert!(unified_signature.verify(&payload[..], &unified_signer.into_account()));
	}

	#[test]
	fn ethereum_raw_signatures_should_work() {
		// payload is random and the signature is generated over that payload by PolkadotJs and ethereum keypair
		let payload = from_hex("0x0a0300e659a7a1628cdd93febc04a4e0646ea20e9f5f0ce097d9a05290d4a9e054df4e028c7d0a3500000000830000000100000026c1147602cf6557f4e0068a78cd4b22b6f6b03e106d05618cde8537e4ffe454b63f7774106903a22684c02eeebe2fdc903ac945bf25962fd9d05e7e0ddfb44f00").expect("Should convert");
		let signature_raw = from_hex("0xd740c8294967b36236c5e05861a55bad75d0866c4a6f63d4918a39769a9582b872299a3411cc0f31b5f631261d669fc21ce427ee23999a91df5f0e74dfbbfc6c00").expect("Should convert");
		let unified_signature = UnifiedSignature::from(ecdsa::Signature::from_raw(
			signature_raw.try_into().expect("should convert"),
		));

		let public_key = ecdsa::Public::from_raw(
			from_hex("0x025b107c7f38d5ac7d618e626f9fa57eec683adf373b1352cd20e5e5c684747079")
				.expect("should convert")
				.try_into()
				.expect("invalid size"),
		);
		let unified_signer = UnifiedSigner::from(public_key);
		assert!(unified_signature.verify(&payload[..], &unified_signer.into_account()));
	}

	#[test]
	fn ethereum_eip712_signatures_for_claim_handle_payload_should_work() {
		let payload = ClaimHandlePayload { base_handle: b"Alice".to_vec(), expiration: 100u32 };
		let encoded_payload = payload.encode_eip_712();

		// following signature is generated via Metamask using the same input to check compatibility
		let signature_raw = from_hex("0x832d1f6870118f5fc6e3cc314152b87dc452bd607581f16b1e39142b553260f8397e80c9f7733aecf1bd46d4e84ad333c648e387b069fa93b4b1ca4fa0fd406b1c").expect("Should convert");
		let unified_signature = UnifiedSignature::from(ecdsa::Signature::from_raw(
			signature_raw.try_into().expect("should convert"),
		));

		// Non-compressed public key associated with the keypair used in Metamask
		// 0x509540919faacf9ab52146c9aa40db68172d83777250b28e4679176e49ccdd9fa213197dc0666e85529d6c9dda579c1295d61c417f01505765481e89a4016f02
		let public_key = ecdsa::Public::from_raw(
			from_hex("0x02509540919faacf9ab52146c9aa40db68172d83777250b28e4679176e49ccdd9f")
				.expect("should convert")
				.try_into()
				.expect("invalid size"),
		);
		let unified_signer = UnifiedSigner::from(public_key);
		assert!(unified_signature.verify(&encoded_payload[..], &unified_signer.into_account()));
	}

	#[test]
	fn ethereum_invalid_signatures_should_fail() {
		let payload = from_hex("0x0a0300e659a7a1628cdd93febc04a4e0646ea20e9f5f0ce097d9a05290d4a9e054df4e028c7d0a3500000000830000000100000026c1147602cf6557f4e0068a78cd4b22b6f6b03e106d05618cde8537e4ffe4548de1bcb12a1d42e58b218a7abb03cb629111625cf3449640d837c5aa98b87d8e00").expect("Should convert");
		let signature_raw = from_hex("0x9633e747bcd951bdb9d98ff84c65562e1f62bd059c578a942859e1695f2472aa0dbaab48c28f6dbc795baa73c27252d97e8dc2170fd7d69694d5cd1863fb968c01").expect("Should convert");
		let unified_signature = UnifiedSignature::from(ecdsa::Signature::from_raw(
			signature_raw.try_into().expect("should convert"),
		));

		let public_key = ecdsa::Public::from_raw(
			from_hex("0x025b107c7f38d5ac7d618e626f9fa57eec683adf373b1352cd20e5e5c684747079")
				.expect("should convert")
				.try_into()
				.expect("invalid size"),
		);
		let unified_signer = UnifiedSigner::from(public_key);
		assert!(!unified_signature.verify(&payload[..], &unified_signer.into_account()));
	}

	#[test]
	fn ethereum_address_mapper_should_work_as_expected_for_eth_20_bytes_addresses() {
		// arrange
		let eth = from_hex("0x1111111111111111111111111111111111111111").expect("should work");

		// act
		let account_id = EthereumAddressMapper::to_account_id(&eth);
		let bytes = EthereumAddressMapper::to_bytes32(&eth);
		let reversed = EthereumAddressMapper::to_ethereum_address(account_id.clone());

		// assert
		let expected_address =
			from_hex("0x1111111111111111111111111111111111111111eeeeeeeeeeeeeeeeeeeeeeee")
				.expect("should be hex");
		assert_eq!(account_id, AccountId32::new(expected_address.clone().try_into().unwrap()));
		assert_eq!(bytes.to_vec(), expected_address);
		assert_eq!(reversed.0.to_vec(), eth);
	}

	#[test]
	fn ethereum_address_mapper_should_return_the_same_value_for_32_byte_addresses() {
		// arrange
		let eth = from_hex("0x1111111111111111111111111111111111111111111111111111111111111111")
			.expect("should work");

		// act
		let account_id = EthereumAddressMapper::to_account_id(&eth);
		let bytes = EthereumAddressMapper::to_bytes32(&eth);

		// assert
		assert_eq!(account_id, AccountId32::new(eth.clone().try_into().unwrap()));
		assert_eq!(bytes.to_vec(), eth);
	}

	#[test]
	fn ethereum_address_mapper_should_return_the_ethereum_address_with_suffixes_for_64_byte_public_keys(
	) {
		// arrange
		let public_key= from_hex("0x15b5e4aeac2086ee96ab2292ee2720da0b2d3c43b5c699ccdbfd38387e2f71dc167075a80a32fe2c78d7d8780ef1b2095810f12001fa2fcedcd1ffb0aa2ee2c7").expect("should work");

		// act
		let account_id = EthereumAddressMapper::to_account_id(&public_key);
		let bytes = EthereumAddressMapper::to_bytes32(&public_key);

		// assert
		// 0x917B536617B0A42B2ABE85AC88788825F29F0B29 is eth address associated with above public_key
		let expected_address =
			from_hex("0x917B536617B0A42B2ABE85AC88788825F29F0B29eeeeeeeeeeeeeeeeeeeeeeee")
				.expect("should be hex");
		assert_eq!(account_id, AccountId32::new(expected_address.clone().try_into().unwrap()));
		assert_eq!(bytes.to_vec(), expected_address);
	}

	#[test]
	fn ethereum_address_mapper_should_return_the_ethereum_address_with_suffixes_for_65_byte_public_keys(
	) {
		// arrange
		let public_key= from_hex("0x0415b5e4aeac2086ee96ab2292ee2720da0b2d3c43b5c699ccdbfd38387e2f71dc167075a80a32fe2c78d7d8780ef1b2095810f12001fa2fcedcd1ffb0aa2ee2c7").expect("should work");

		// act
		let account_id = EthereumAddressMapper::to_account_id(&public_key);
		let bytes = EthereumAddressMapper::to_bytes32(&public_key);

		// assert
		// 0x917B536617B0A42B2ABE85AC88788825F29F0B29 is eth address associated with above public_key
		let expected_address =
			from_hex("0x917B536617B0A42B2ABE85AC88788825F29F0B29eeeeeeeeeeeeeeeeeeeeeeee")
				.expect("should be hex");
		assert_eq!(account_id, AccountId32::new(expected_address.clone().try_into().unwrap()));
		assert_eq!(bytes.to_vec(), expected_address);
	}

	#[test]
	fn ethereum_address_mapper_should_return_the_default_zero_values_for_any_invalid_length() {
		// arrange
		let public_key = from_hex(
			"0x010415b5e4aeac2086ee96ab2292ee2720da0b2d3c43b5c699ccdbfd38387e2f71dc167075a801",
		)
		.expect("should work");

		// act
		let account_id = EthereumAddressMapper::to_account_id(&public_key);
		let bytes = EthereumAddressMapper::to_bytes32(&public_key);

		// assert
		let expected_address = vec![0u8; 32]; // zero default values
		assert_eq!(account_id, AccountId32::new(expected_address.clone().try_into().unwrap()));
		assert_eq!(bytes.to_vec(), expected_address);
	}

	#[test]
	fn ethereum_address_mapper_is_ethereum_address_correctly_detects() {
		let valid_eth_address =
			from_hex("0x917B536617B0A42B2ABE85AC88788825F29F0B29eeeeeeeeeeeeeeeeeeeeeeee")
				.expect("should be hex");
		let valid_addr32 = AccountId32::new(valid_eth_address.clone().try_into().unwrap());

		assert!(EthereumAddressMapper::is_ethereum_address(&valid_addr32));

		let (pair, _) = sr25519::Pair::generate();
		let random_addr32 = AccountId32::from(pair.public());
		assert!(!EthereumAddressMapper::is_ethereum_address(&random_addr32));
	}
}