1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
use core::marker::PhantomData;

use common_primitives::msa::MessageSourceId;
use frame_support::{
	storage::{child, child::ChildInfo, ChildTriePrefixIterator},
	Blake2_128, Blake2_256, Hashable, StorageHasher, Twox128, Twox256,
};
use parity_scale_codec::{Decode, Encode};
use sp_core::{ConstU8, Get};
use sp_io::hashing::twox_64;
use sp_std::{fmt::Debug, prelude::*};

/// Hasher to use to hash keys to insert to storage.
pub trait MultipartKeyStorageHasher: StorageHasher {
	type HashSize: Get<u8>;
	/// Split the hash part out of the input.
	///
	/// I.e. for input `&[hash ++ hash ++ key]` returns `&[key]`
	fn reverse(x: &[u8], num_key_parts: u8) -> &[u8] {
		let hash_len: usize = (Self::HashSize::get() * num_key_parts).into();
		if x.len() < hash_len {
			log::error!("Invalid reverse: hash length too short");
			return &[]
		}
		&x[hash_len..]
	}
}
/// 128-bit Blake2 hash.
impl MultipartKeyStorageHasher for Blake2_128 {
	type HashSize = ConstU8<16>;
}
/// 256-bit Blake2 hash.
impl MultipartKeyStorageHasher for Blake2_256 {
	type HashSize = ConstU8<32>;
}
/// 128-bit XX hash.
impl MultipartKeyStorageHasher for Twox128 {
	type HashSize = ConstU8<16>;
}
/// 256-bit XX hash.
impl MultipartKeyStorageHasher for Twox256 {
	type HashSize = ConstU8<32>;
}

pub trait MultipartStorageKeyPart:
	Clone + Debug + Default + Decode + Encode + Eq + PartialEq + Hashable
{
}
impl<T> MultipartStorageKeyPart for T where
	T: Clone + Debug + Default + Decode + Encode + Eq + PartialEq + Hashable
{
}

/// A trait that defines operations for a multi-part key in child storage that allows to retrieve
/// all different prefix combinations
pub trait MultipartKey<H: MultipartKeyStorageHasher>: MultipartStorageKeyPart {
	type Arity: Get<u8>;

	fn hash(&self) -> Vec<u8>;
	fn hash_prefix_only(&self) -> Vec<u8>;

	fn decode(hash: &[u8]) -> Result<Self, parity_scale_codec::Error> {
		let mut key_material = H::reverse(hash, Self::Arity::get());
		<Self as Decode>::decode(&mut key_material)
	}

	fn decode_without_prefix(
		hash: &[u8],
		prefix_len: u8,
	) -> Result<Self, parity_scale_codec::Error> {
		if prefix_len > Self::Arity::get() {
			return Err("Prefix longer than total key length".into())
		}

		let mut key_material = H::reverse(hash, Self::Arity::get() - prefix_len);
		<Self as Decode>::decode(&mut key_material)
	}
}

impl<H: MultipartKeyStorageHasher> MultipartKey<H> for () {
	type Arity = ConstU8<0>;

	fn hash(&self) -> Vec<u8> {
		Vec::new()
	}

	fn hash_prefix_only(&self) -> Vec<u8> {
		Vec::new()
	}

	fn decode(_hash: &[u8]) -> Result<Self, parity_scale_codec::Error> {
		Ok(())
	}
}

impl<H: MultipartKeyStorageHasher, T1: MultipartStorageKeyPart> MultipartKey<H> for (T1,) {
	type Arity = ConstU8<1>;

	fn hash(&self) -> Vec<u8> {
		let encoded_1 = self.0.encode();
		<H as StorageHasher>::hash(&encoded_1)
			.as_ref()
			.iter()
			.chain(self.encode().iter())
			.cloned()
			.collect::<Vec<_>>()
	}

	fn hash_prefix_only(&self) -> Vec<u8> {
		let encoded_1 = self.0.encode();
		<H as StorageHasher>::hash(&encoded_1)
			.as_ref()
			.iter()
			.cloned()
			.collect::<Vec<_>>()
	}
}

impl<H: MultipartKeyStorageHasher, T1: MultipartStorageKeyPart, T2: MultipartStorageKeyPart>
	MultipartKey<H> for (T1, T2)
{
	type Arity = ConstU8<2>;

	fn hash(&self) -> Vec<u8> {
		let encoded_1 = self.0.encode();
		let encoded_2 = self.1.encode();
		H::hash(&encoded_1)
			.as_ref()
			.iter()
			.chain(H::hash(&encoded_2).as_ref().iter())
			.chain(self.encode().iter())
			.cloned()
			.collect::<Vec<_>>()
	}

	fn hash_prefix_only(&self) -> Vec<u8> {
		let encoded_1 = self.0.encode();
		let encoded_2 = self.1.encode();
		<H as StorageHasher>::hash(&encoded_1)
			.as_ref()
			.iter()
			.chain(H::hash(&encoded_2).as_ref().iter())
			.cloned()
			.collect::<Vec<_>>()
	}
}

impl<
		H: MultipartKeyStorageHasher,
		T1: MultipartStorageKeyPart,
		T2: MultipartStorageKeyPart,
		T3: MultipartStorageKeyPart,
	> MultipartKey<H> for (T1, T2, T3)
{
	type Arity = ConstU8<3>;

	fn hash(&self) -> Vec<u8> {
		let encoded_1 = self.0.encode();
		let encoded_2 = self.1.encode();
		let encoded_3 = self.2.encode();
		H::hash(&encoded_1)
			.as_ref()
			.iter()
			.chain(H::hash(&encoded_2).as_ref().iter())
			.chain(H::hash(&encoded_3).as_ref().iter())
			.chain(self.encode().iter())
			.cloned()
			.collect::<Vec<_>>()
	}

	fn hash_prefix_only(&self) -> Vec<u8> {
		let encoded_1 = self.0.encode();
		let encoded_2 = self.1.encode();
		let encoded_3 = self.2.encode();
		<H as StorageHasher>::hash(&encoded_1)
			.as_ref()
			.iter()
			.chain(H::hash(&encoded_2).as_ref().iter())
			.chain(H::hash(&encoded_3).as_ref().iter())
			.cloned()
			.collect::<Vec<_>>()
	}
}

impl<
		H: MultipartKeyStorageHasher,
		T1: MultipartStorageKeyPart,
		T2: MultipartStorageKeyPart,
		T3: MultipartStorageKeyPart,
		T4: MultipartStorageKeyPart,
	> MultipartKey<H> for (T1, T2, T3, T4)
{
	type Arity = ConstU8<4>;

	fn hash(&self) -> Vec<u8> {
		let encoded_1 = self.0.encode();
		let encoded_2 = self.1.encode();
		let encoded_3 = self.2.encode();
		let encoded_4 = self.3.encode();
		H::hash(&encoded_1)
			.as_ref()
			.iter()
			.chain(H::hash(&encoded_2).as_ref().iter())
			.chain(H::hash(&encoded_3).as_ref().iter())
			.chain(H::hash(&encoded_4).as_ref().iter())
			.chain(self.encode().iter())
			.cloned()
			.collect::<Vec<_>>()
	}

	fn hash_prefix_only(&self) -> Vec<u8> {
		let encoded_1 = self.0.encode();
		let encoded_2 = self.1.encode();
		let encoded_3 = self.2.encode();
		let encoded_4 = self.3.encode();
		<H as StorageHasher>::hash(&encoded_1)
			.as_ref()
			.iter()
			.chain(H::hash(&encoded_2).as_ref().iter())
			.chain(H::hash(&encoded_3).as_ref().iter())
			.chain(H::hash(&encoded_4).as_ref().iter())
			.cloned()
			.collect::<Vec<_>>()
	}
}

/// A trait that allows to iterate on the prefix of a multi-part key
pub trait IsTuplePrefix<H: MultipartKeyStorageHasher, T: MultipartStorageKeyPart>:
	MultipartKey<H>
{
}
impl<H: MultipartKeyStorageHasher, T1: MultipartStorageKeyPart> IsTuplePrefix<H, (T1,)> for () {}
impl<H: MultipartKeyStorageHasher, T1: MultipartStorageKeyPart, T2: MultipartStorageKeyPart>
	IsTuplePrefix<H, (T1, T2)> for ()
{
}
impl<H: MultipartKeyStorageHasher, T1: MultipartStorageKeyPart, T2: MultipartStorageKeyPart>
	IsTuplePrefix<H, (T1, T2)> for (T1,)
{
}
impl<
		H: MultipartKeyStorageHasher,
		T1: MultipartStorageKeyPart,
		T2: MultipartStorageKeyPart,
		T3: MultipartStorageKeyPart,
	> IsTuplePrefix<H, (T1, T2, T3)> for ()
{
}
impl<
		H: MultipartKeyStorageHasher,
		T1: MultipartStorageKeyPart,
		T2: MultipartStorageKeyPart,
		T3: MultipartStorageKeyPart,
	> IsTuplePrefix<H, (T1, T2, T3)> for (T1,)
{
}
impl<
		H: MultipartKeyStorageHasher,
		T1: MultipartStorageKeyPart,
		T2: MultipartStorageKeyPart,
		T3: MultipartStorageKeyPart,
	> IsTuplePrefix<H, (T1, T2, T3)> for (T1, T2)
{
}
impl<
		H: MultipartKeyStorageHasher,
		T1: MultipartStorageKeyPart,
		T2: MultipartStorageKeyPart,
		T3: MultipartStorageKeyPart,
		T4: MultipartStorageKeyPart,
	> IsTuplePrefix<H, (T1, T2, T3, T4)> for ()
{
}
impl<
		H: MultipartKeyStorageHasher,
		T1: MultipartStorageKeyPart,
		T2: MultipartStorageKeyPart,
		T3: MultipartStorageKeyPart,
		T4: MultipartStorageKeyPart,
	> IsTuplePrefix<H, (T1, T2, T3, T4)> for (T1,)
{
}
impl<
		H: MultipartKeyStorageHasher,
		T1: MultipartStorageKeyPart,
		T2: MultipartStorageKeyPart,
		T3: MultipartStorageKeyPart,
		T4: MultipartStorageKeyPart,
	> IsTuplePrefix<H, (T1, T2, T3, T4)> for (T1, T2)
{
}
impl<
		H: MultipartKeyStorageHasher,
		T1: MultipartStorageKeyPart,
		T2: MultipartStorageKeyPart,
		T3: MultipartStorageKeyPart,
		T4: MultipartStorageKeyPart,
	> IsTuplePrefix<H, (T1, T2, T3, T4)> for (T1, T2, T3)
{
}

/// Paginated Stateful data access utility
pub struct StatefulChildTree<H: MultipartKeyStorageHasher = Twox128> {
	hasher: PhantomData<H>,
}
impl<H: MultipartKeyStorageHasher> StatefulChildTree<H> {
	/// Reads a child tree node and tries to decode it
	///
	/// The read is performed from the `msa_id` only. The `key` is not required. If the
	/// data doesn't store under the given `key` `None` is returned.
	pub fn try_read<K: MultipartKey<H>, V: Decode + Sized>(
		msa_id: &MessageSourceId,
		pallet_name: &[u8],
		storage_name: &[u8],
		keys: &K,
	) -> Result<Option<V>, ()> {
		let child = Self::get_child_tree_for_storage(*msa_id, pallet_name, storage_name);
		let value = child::get_raw(&child, &keys.hash());
		match value {
			None => Ok(None),
			Some(v) => Ok(Decode::decode(&mut &v[..]).map(Some).map_err(|_| ())?),
		}
	}

	/// Prefix Iterator for a child tree
	///
	/// Allows getting all the keys having the same prefix
	/// Warning: This should not be used from any on-chain transaction!
	pub fn prefix_iterator<
		V: Decode + Sized,
		K: MultipartKey<H> + Sized,
		PrefixKey: IsTuplePrefix<H, K>,
	>(
		msa_id: &MessageSourceId,
		pallet_name: &[u8],
		storage_name: &[u8],
		prefix_keys: &PrefixKey,
	) -> Box<impl Iterator<Item = (K, V)>> {
		let child = Self::get_child_tree_for_storage(*msa_id, pallet_name, storage_name);
		let result = ChildTriePrefixIterator::<(Vec<u8>, V)>::with_prefix(
			&child,
			&prefix_keys.hash_prefix_only(),
		)
		.filter_map(|(k, v)| {
			if let Ok(key) =
				<K as MultipartKey<H>>::decode_without_prefix(&k, PrefixKey::Arity::get())
			{
				Some((key, v))
			} else {
				None
			}
		});
		Box::new(result)
	}

	/// Writes directly into child tree node
	pub fn write<K: MultipartKey<H>, V: Encode + Sized>(
		msa_id: &MessageSourceId,
		pallet_name: &[u8],
		storage_name: &[u8],
		keys: &K,
		new_value: V,
	) {
		let child_trie_info = &Self::get_child_tree_for_storage(*msa_id, pallet_name, storage_name);
		child::put_raw(child_trie_info, &keys.hash(), new_value.encode().as_ref());
	}

	/// Kills a child tree node
	pub fn kill<K: MultipartKey<H>>(
		msa_id: &MessageSourceId,
		pallet_name: &[u8],
		storage_name: &[u8],
		keys: &K,
	) {
		let child_trie_info = &Self::get_child_tree_for_storage(*msa_id, pallet_name, storage_name);
		child::kill(child_trie_info, &keys.hash());
	}

	/// These hashes should be consistent across the chain so we are hardcoding them
	fn get_child_tree_for_storage(
		msa_id: MessageSourceId,
		pallet_name: &[u8],
		storage_name: &[u8],
	) -> ChildInfo {
		let trie_root = Self::get_tree_prefix(msa_id);
		// child tree root should be hashed by Blake128 to avoid probability of conflict
		let hashed_keys: Vec<u8> = [
			Blake2_128::hash(&trie_root[..]).as_ref(),
			twox_64(pallet_name).as_ref(),
			twox_64(storage_name).as_ref(),
		]
		.concat();
		child::ChildInfo::new_default(&hashed_keys)
	}

	/// Storage Prefix for a given MSA Id
	fn get_tree_prefix(msa_id: MessageSourceId) -> Vec<u8> {
		let arr = [&msa_id.encode()[..], b"::"].concat();
		arr.to_vec()
	}
}